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A differential game with fixed end time is considered. In the general case, when the utility function is 

not assumed to be smooth, quasigradients should replace gradients in the construction of e-optimal 

strategies. Constructions determining quasigradients are described. 

In control theory and the theory of differential games one distinguishes two versions of the 
problem of feedback control. The first requires the determination of a strategy that will 
guarantee the solution of the problem for a fixed initial state of the system. In the other version 
one has to construct a universal strategy, to guarantee the solution for a whole domain of initial 
states. The construction of such strategies has been considered in several publications (see, e.g. 
P4>. 

The present paper continues these investigations, using certain ideas due to Krasovskii (e.g. 
[l, 21). The constructions will invoke, in addition, elements of non-smooth analysis and the 
theory of generalized (minimax and viscosity) solutions of first-order partial differential 
equations [5-131. Our main result is a construction reminiscent of the usual definition of 
optimal strategy in classical dynamic programming when the utility function of the differential 
game is smooth, except that the gradient of the utility function (which may not exist) will be 
replaced by the quasigradient. 

1. Let the motion of the controlled system be described by the equation 

i(t) = f(r,x(t),u(t),‘U(t)), to It 58 (1.1) 

where x(t) E R" is the phase state of the system at time t. 
In the theory of differential games u(t) and u(t) are the controls of the first (minimizing) 

player and the second (maximizing) player. In control problems with a guaranteed result the 
first player tries to maintain the performance of the control process whatever the noise v(t), 
which is “chosen” by a fictitious second player. 

Let us consider a differential game in which the payoff functional is defined by the equation 

It is assumed that 

y(x(.),u(.),u(.)) = 0(x(8)) - ~B(t.x(t).u(t),u(r))dr (1.2) 

‘0 

(1.3) 
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where (s, f) is the scalar product of the vectors s, f E R”. It is also assumed that the functions 
f, g and o are jointly continuous in all their variables. The function ts satisfies the condition 

la(x)l~K,,(l+]]x]]), VX E R” 

where K, is some positive number. The functions fand g satisfy a Lipschitz condition in x 

I~(r,x,s)-H(r,y,s)K h~~x-y~<l+~~s~l> X,Y E R” (1.4) 

These conditions, which make the discussion easier, may be weakened. 
Suppose that the first player has chosen some positional strategy U and some partition 

A={+=0 ,..., m+l), to<‘1 <...<&,,+I =e 

of the time interval [to, Cl]. The strategy U will be identified here with an arbitrary function 

[0,8]xR” 3(t,x)+U(r,x)~P 

We emphasize that U(r, x) need not be continuous. 
Let S(r,, x,,, U, A) denote the set whose elements are the triples (controllable processes) 

(xc), u(s), ti)) such that N) :[I,, 0]+Q is an arbitrary measurable function, u(.) a piecewise 
constant control of the form 

u(t)=U(ti,X(ti)), ti It<ti+lr i=O,1,2,...,m 

and x(.) : [t,,, O]+ R” is an absolutely continuous function satisfying Eq. (1.1) and the condition 
x(&J =x0. A similar definition yields the set S(r,, x,,, V, A), where V: [0, B]xR” +Q is the 
strategy of the second player. 

The first (second) player aims to guarantee a minimum (maximum) value of the payoff 
functional. Optimal outcomes for the first and second players, respectively, will be the 
quantities T*(t,, x0) and I*&,, x0) defined as follows: 

where 

infp(A):=~~p(a), supp(A):=yp(a) 

We know that under the above conditions the optimal outcomes for the first and second 
players are identical. The quantity Val(t,, x,J : = r * (t,,, cc,,) = r* (to, x0) is called the value of 
the differential game (l.l), (1.2). The value of a game depends on the initial position. We may 
therefore define the utility function (to, x0) + Val(t,, x,,) : [0, t3] x R” + R. 

These definitions presuppose the formalization of differential games proposed in [l, 141. 
Although the formal notions of strategy and definitions of value in the theory of differential 
games may differ from one author to another, these formalizations turn out to be equivalent, in 
the sense that different definitions lead to the same utility function. 

We know that the utility function is u-stable [14]. In order to formulate this property, we will 
need some notation. We define 

E(r,x,u):= co{(f(r,x,u,u), g(r,x,u,u))E R” x R:u E P} (1.5) 
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Let S(t,, x,,, z,,, u) denote the set of trajectories x(e), z()) : [r,, e] + R” x R of the differential 
inclusion 

(-w,i(t)) E E(t, x(t), u), to 5 t 5 8 (1.6) 

that satisfy the initial condition (x(t,), z(f,)) = (x,,, b). A function p(t, x): [0, 01 x R” + R is said 
to be u-stable if, for any point (r,, x0, b) E grp : = ((r, x, p(r, x)): (r, x) E [0, e]x R”) and any 
control 2) E Q, a trajectory (~0, z(.)) E S(r,,, x,,, z,,, u) exists such that z(r) > p(r, x(r)) whenever 
r E [r,, 01. Note that u-stability implies that the over-graph of p is weakly invariant with respect 
to the differential inclusions (1.6). Now, the theory of generalized (minimax and viscosity) 
solutions of Hamilton-Jacobi equations considers what are known as upper and lower 
solutions (see, e.g. [6-111). We know that u-stable functions are upper solutions of the Isaacs- 
Bellman equation 

ap 1 at + H(t,x,D,p) = 0 

According to the method of dynamic programming (see, e.g. [9]), if the utility function is 
differentiable, the players will have optimal strategies of the form 

W’lX) = u&,x,s(t,xN, V&x) = u,(r,x,s(t,x)) 

where 

s(r, x) = D,Val(r, x), i.e. the strategies U, and V, are superpositions of the functions (pre- 
strategies) u,,(r, x, s), vo(r, x, s) and the gradient s(r, x) of the utility function with respect to x. 

Here and below 

Argrreyth(z):= {zO E Z:h(zO), h(z)Vz E Zl 

Arg$;h(z):= (zo E Z:&Ja h(z)Vz E Zl 

2. In the general case, when the utility function is not differentiable, one can modify 
strategies of the above kind, replacing the gradient s(r, x) by a “quasigradient” s,(r, x) defined 
as follows. 

Let p(r, x) be a u-stable lower semicontinuous function satisfying the equality p(8, x) = a(x). 
This is the case, in particular, for the utility function Val. It can be shown that under the above 
assumptions p satisfies the estimate 

pWP-K(l+IIxII), v(r,x)E[o,elXR” (2.1) 

Consider the following transformation of p (a denotes a positive parameter) 

Pa(L-+= $$[P(t.Y)+ W,(~,X,Y)l (2.2) 

~,(t,x,y):=a-‘(eeb -a) 7 a +1x-yll (2.3) 

Choose a number a > 0 so small that 

L(a):=a-‘(eTM -a)> K (2.4) 
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Note that 

for any t E [0, 01, x E R”, y E R”. Taking inlo account that the function y + p(r, y)+ ~,(t, X, y) is 
lower semicontinuous, we see that lhe minimum in (2.2) is achieved. 

Choose an arbitrary 

We assert that 

Indeed, it follows from (2.2), (2.3) that 

(2.7) 

(2.8) 

In order to simplify the notation, we put IJ : = y,(r, x). By (2.2), (2.1) and (2.9, we have 

p,(r,x)=p(I,T))+w,(r,x,TJ)L-K(l+U~II) +w,(t,x,~1)>-K(l+Il~1I)+L(a)lx-rlll= 

=(L(~)-K)((X-~~W+K~X-~~W-KY~~H-K~(L(~)-K))J~-~~~)-K(~+JJ~N) 

Together with the previous estimate, this implies that 

Thus, we have proved (2.7). 

Let D,w(t, X, y) and D,w(t, x, y) be the gradients of w, with respect to x and y. We have 
D,w(t, n, y) = -DYw(z, n, y). Define 

saO,x):= D,w,(t,x,y,(r,x))= -Dyw,(r.x.ya(r,x)) (2.9) 

If the function y + p(f, y) is continuously differentiable in some neighbourhood of x contain- 
ing the point y,(t, x), then 

Therefore s,(f, x): = D&t, y,(f, x)). Noting that lim,, y,(t, x) = x, we obtain 

~~os,(r.~) = D,p(r,x) 

For that reason we may call s,&, X) the quasigradient of p with respect to X. 
Define a strategy of the first player by 

&J-d= u&x,s,(r,x)) (2.10) 

where the function u,, (pre-strategy) is defined by (1.7). 

Theorem. For any compact set D c [0, 01x R” and any positive number E a > 0 and p > 0 
exist such that 
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for all (lo, x,,) ED and any partitions with diam(A): = max(ti+l -ti : i =O, 1, . . . , m) s p. In 
particular, if p = Val, the strategy U, is e-optimal and universal. 

Proof. Inequality (2.8) holds, as does the following estimate for any bounded set it4 c R” a 
number v(a) such that 

pa@, X) 2 a(x) - v(a). lif"ou(a)=O (2.12) 

This follows from (2.7) and the continuity of o. 
Using condition (1.4) one can verify that a function w, of the form (2.3) satisfies the 

inequality 

2% Iat+ H(t,x,DXw,,b H&y,-DYw,)IO (2.13) 

inequalities of this type play an important role in the theory of viscosity solutions of 
Hamilton-Jacobi equations (see, e.g. condition A4 in [8]). 

Choose the parameter a E (0, 2ewm] so that inequality (2.4) holds. Let (x(.), u(), N)) E S(t,, 
x0, U,, A). We assert that 

‘;+I 
oa(ri+r vXCti+, ))- Ig(~,x(z),u(z),u(~))dz s 

4 

~Pa(fi,X(ti))+hl(fi+l -ri)tri+r -‘i) 
Here and below h,(S) + 0 as 6 + 0. 

It follows from this estimate that 

(2.14) 

Combining this estimate with (2.8) and (2.12) we conclude that 

y(x(.),U(.),~(.))= cr(~(e))-~g(7,~(7),~(z),u(~))~7~p(r,,x,)+~(a)+a+v(a) 
10 

as required. 

(2.16) 

Thus, it remains to prove (2.14). To simplify the notation, let us put 

We have to prove that 

Put 

(2.17) 

(2.18) 

Define rl= ~~(7, t), u* = u,,(z, q, s*). By (2.2) and (2.6), we have 

Pa(7.S) = p(7.rl)+ w,(7&.q1) (2.19) 
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The u -stability property of p implies the existence of a vector (f*, g*) E R" x R such that 

It therefore follows from (2.19) and (2.20) that 

The last estimate follows from (2.2). Since E, + f* S = x(~+ 6), we obtain 

(2.21) 

Let us estimate r. Since w, is differentiable, we have 

r-&=r<aw, !at)(z,5,rl)+(s*,f*)-(s’,f,)16+h3(6)6 

where s* := s,(z, 5): = D,w,(t, S, q) = -D,w,(t, 5, q) (see (2.6) and (2.9)). 
Recall that U* = U,($ c)= uo(x, t, s*). By (1.7), we have (s*,fl-r, S, u*, 1)))-g(%, 5, IL*, u)~ H(%, 5, s*> 

for any u E Q. Therefore 

Recall, moreover, that u* = u&z, 11, s*). It therefore follows from (1.8) that 

Consequently 

Thus, we obtain 

Taking (2.13) into account, we obtain 

@w, /at><z,5,ro+(s*,f*)-(s*,fr) sg* -g. +h,(S) 

Thus, r s g*&+h,@). Substituting this bound into (2.21), we obtain 

pa(~,5)2pa(l+6,x(~+6))-(g* +btW 

(recall that g* was defined by (2.18)). We have thus proved (2.17). 

If the payoff functional does not contain an integral term, the role of the penalty function in 
the transformation (2.2) may be assigned to the function 

war (x, Y) = 11~ - ~1' / @a) 

In that case the equality 
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is, in fact, a well-known transform, used in convex analysis and sometimes called the Yosida- 
Moreau transform (see, e.g. [13]). Equality (2.2) may be viewed as a modification of this 
transform. 

An analogous construction of e-optimal universal strategies may be proposed for time- 
optimal control. 

The construction proposed above is a fairly compact way of proving the existence of an E- 
saddle point in a differential game. However, it is not very suitable for computer algorithm- 
ization. Nevertheless, one can modify the penalty function w,, in particular, adjusting it to 
ensure stability with respect to information or computational errors. 

Note that the above solution is based on a “smoothing” transform of the utility function. In 
that connection we must mention [15], in which a non-traditional approach to the synthesis of 
strategies is proposed, based on the use of the concept of the analytical centre of a convex set 
and internal smoothed realizations of the controls. 

This research was supported financially by the Russian Fund for Fundamental Research (93- 
011-16032). 
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